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ABSTRACT

This study is concerned with the analysis of the structural behavior
of composite materials. It is shown that composite materials can be de-
signed to produce a wide range of mechanical properties. Thus, a structural
designer now has at his disposal an added dimension in optimum design - the
materials optimization.

Two types of composite materials are investigated: the unidirectional
fiber-reinforced composite and the laminated anisotropic composite. Ana-
lytical relations are derived between the composite material coefficients and
the geometric and material parameters of the constituents.

Test specimens made of filament-wound materials are used. The ex-
perimental results show that the relations derived in this study are more
accurate than existing theories, which include the netting analysis. Reliable
data on filament-wound materials, which are now available for the first time,
can be used for future investigations of the behavior of filament-wound

structures,
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NOMENCLATURE

[A] = A = in-plane stiffness matrix, in 1b/in.
Intermediate in-plane matrix, in lb/in.
In-plane compliance matrix, in lb/in,

[B] = B = stiffness coupling matrix, in pounds
Intermediate coupling matrix, in inches
Compliance coupling matrix, in 1/1lb
Transformed Bij

Filament contiguity, where 0 < C <1

Composite anisotropic stiffness matrix, in psi
Composite orthotropic stiffness matrix, in psi

[D] = D = flexural stiffness matrix, in lb-in,
Intermediate flexural matrix, in lb-in.

Flexural compliance matrix, in 1/lb~in.

Filament Young's modulus, in psi

Matrix Young's modulus, in psi

Axial stiffness of unidirectional composite, in psi
Transverse stiffness of unidirectional composite, in psi
Stiffness ratio = EZZ/EII

Filament shear modulus = Ef/Z(I + vf)

Matrix shear modulus = Em/Z(.l + vm)

Shear modulus of unidirectional composite, in psi

[H*] = H* = Intermediate coupling matrix, in inch (¥ Brj)

[H'] =H = Compliance coupling matrix, in 1/1b (= Eij [transposed B;j])

Plate thickness, in inches

Filament misalignment factor, k<1
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NOMENCLATURE (Continued)

Filament areal modulus = Ef/Z(l-vf)
Matrix areal modulus = E_ /2(1-v_)

m m
Bending or twisting moment, in pounds

Cross-ply ratio

Stress resultant, in 1b/in.

Total number of layers

Internal pressure, in psi

Two-dimensional hydrostatic pressure, in psi

Percent resin content by weight or radius of pressure vessel

Composite anisotropic compliance matrix, in psi
Filament specific gravity

Matrix specific gravity

Strain component, in in./in.

In-plane strain component, in in. /in,

Orientation of unidirectional filaments or lamination angle, in degrees

Bending or twisting curvature, in (inch).1
Filament Poisson's ratio

Matrix Poisson's ratio

= Major Poisson's ratio of unidirectional composite

= Minor Poisson's ratio of unidirectional composite

V12F22/E )
Stress components, in psi
| yf/ ym
Resin content by volume = (TOOTRY (Yf/"m) —
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SECTION |

INTRODUCTION

1.1 COMPOSITE MATERIALS

Composite materials consist of two or more constituent materials
bonded together so that the gross propert‘ies of the composite are superior to
those of the constituents; e.g., the desirable properties (high strength, high
stiffness, and low weight) are maintained, while the undesirable properties
(low ductility) are suppressed, The present investigation is intended to es-
tablish some rational basis of compatibility between two constituent materials
of a composite from the mechanical standpoint. Process difficulties in com-
bining two vastly different materials, chemically and metallurgically in-
compatible, will not be considered here.

The mechanical compatibility is important if the composite material
is to be used for structural members., The desired gross properties of the
composite can be achieved by selecting the proper constituent materials and
putting them tégether in a proper geometrical arrangement. In short, the
present investigation of the structural behavior of composite materials is
motivated from the standpoint of the design and optimization of composite

materials.

1.2 STRUCTURAL BEHAVIOR OF COMPOSITE MATERIALS

The composite material is treated as a heterogeneous anisotropic
continuum. Thus, the structural behavior of the composite material is
described by the mechanical constitutive equation of the composite. The
material coefficients of this equation describe the extent of mechanical

response of the composite under the influence of external-loads. The present
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investigation is concerned with the relations between these coefficients and the
material and geometric parameters of the constituent materials, This will be
described further in the next section.

1.3 TYPES OF STRUCTURAL COMPOSITES

Structural composites can be classified basically into two classes:

multiphase and laminated. These are discussed in the following paragraphs.

a. Multiphase Composites

The multiphase composite consists of two or more constituent phases,
although most available composites contain only two phases. Examples of two-
phase composites includels 2 cement aggregate, tungsten carbide in cobalt,
alumina whiskers in metal, silica fiber phenolics, teflon fiber in plastics, and
glass-reinforced plastics, As a mathematical approximation, two-phase
materials can be represented by a quasi-hornogeneous continuum, i.e.,
locally heterogeneous but grossly homogeneous. Of the two phases, the
stronger, or reinforcing phase, can be approximated as spherical or cylindri-
cal inclusions dispersed in the matrix phase. For example, the aggregates
can be regarded as spherical inclusions; the whiskers, fibers, and filaments
as cylindrical inclusions. When the inclusions are randomly distributed, the
composite is grossly isotropic; when they are orderly distributed, the compos-
ite is grossly anisotropic. The type of symmetry of a grossly anisotropic
composite depends on the packing arrangement of the inclusions, e.g., tetragonal
or orthotropic symmetry for square packing and transversely isotropic for hexag-

onal packing,

b. Laminated Composites

The laminated composite consists of many layers of multiphase or homo-
geneous materials bonded together. Examples of laminated composites include
plywood, sandwich construction, and reinforced plastics, As a mathematical
approximation, laminated composites can be represented by an in-plane
homogeneous and transversely heterogeneous continuum. The transverse

heterogeneity has a step-wise variation in material properties between layers,
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1.4 SCOPE OF INVESTIGATION

The present investigation is concerned with the structural behavior of
two types of composite materials: unidirectional fiber-reinforced composites
and laminated composites consisting of unidirectional composites. These are

discussed in the following paragraphs.

a. Unidirectional Fiber-Reinforced Composites

The unidirectional fiber-reinforced composite is treated as a two-phase
material, with the axis of the reinforcing fibers or filaments aligned parallel
and packed randomly in the plane transverse to the fiber axis.

The governing constitutive equation of this composite is the generalized
Hooke's law. The material coefficients of this equation are expressed as func-

tions of the material and geometric parameters of the constituent materials.

b. Laminated Composites Consisting of Unidirectional Composites

The laminated composite is assembled by bonding together unidirectional
layers of identical mechanical properties, with adjacent layers orthogonal to
each other (cross-ply) or oriented symmetrically with respect to an arbitrary
reference axis (angle-ply).

The governing constitutive equation is the relation between the in-plane
stress and moment and the in-plane strain and curvature. The material co-
efficients of this equation are expressed as functions of the properties of the
unidirectional composite and lamination parameters,

For the experimental verification of the theoretical predictions discussed
above, test specimens in the shapes of beams, plates, and cylindrical shells are

made from glass filament-epoxy resin composites.

1-3




SECTION 2

UNIDIRECTIONAL COMPOSITES — THEORY

2,1 INTRODUCTION

The unidirectional filament-reinforced composite consists of a large
number of parallel fibers or filaments embedded in a matrix. The governing

constitutive equation of this composite material is

o.=C.. €, (2.1)

where 0, = the stress components; €. = engineering (not tensorial) strain

J
components; cij = the composite stiffness matrix; i, j=1, 2,...,6.
The objective of this investigation is to derive the composite anisotropic

moduli as functions of the following material and geometric parameters:

= C.. (Ef, v

ciJ ij E » V_ Ym. R-n Cs k» 0) (2° 2)

£ YP *m’ Ym

where E, v, ¥ = the Young's modulus, Poisson's ratio, and specific gravity of
the filament and matrix, designated by subscripts f and m, respectively;

R = matrix (resin) content by weight; C = contiguity factor; k = filament mis-
alignment factor; and 6 = orientation of filament axis. The derivation of
Equation (2. 2) can be simplified considerably by taking advantage of the trans-
formation property of the composite moduli, i.e., Equation (2.2) can be written

as

c..=¢C..(C.., 6) (2.3)




Similar studies have been undertaken in recent years; in these studies,
the composite media were assumed to be locally heterogeneous and grossly

homogeneous with the following additional specializations:
. 3-
(1) Local and gross isotropy

(2) Local anisotropy and gross isoi:ropy7

(3) Local isotropy and gross anisotropy8_14 "

The present problem is concerned with (3). Most of the existing
vvorkss_12 may be considered modifications of Pa.ul's3 method, since they
considered the phases connected in series or in parallel. To apply Paul's
method, the actual filaments, shown in Figure 1, must be reshaped mathe-
matically inte a square or rectangular cross section. Hashin and Rosen13 did
not reshape the filaments, but, instead, relocated mathematically the filaments
so that a hexagonal or nearly hexagonal array was attained. Herrmann and

Pis'cer14 relocated the filaments into a square array.
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Figure 1. Photomicrograph of Unidirectional Composite




The number of independent moduli increases from two,for the grossly
isotropic case, to four, five, or six for the unidirectional composite., The
exact number depends on the type of symmetry of the composite, as dictated
by the assumed packing arrangement of the fibers in the composite; this is

listed as follows:

Number of
Symmetry Independent Moduli References Fiber Packing

Orthotropy 4 6-10 Random
(Two-Dimensional)

Transverse Isotropy 5 11 Hexagonal or
Random
Tetragonal 6 12 Square

For the present investigation, the fiber packing is treated as random,
and the symmetry is two-dimensional orthotropy. This viewpoint is realistic,
because the unidirectional composite is made in the form of thin plates or
layers, Instead of using the components of Ci" it is more convenient to use

. : 15
the engineering constants Ell' EZZ' le’ and G, where

Cl =B /(-vp Y21

622 = E,,/(1 - v, vy)) (2. 4)
Ci12= "12C22° Y21 C1a

666 =G

Once the expressions for the four engineering constants in terms.of the

material and geometric parameters are known, Cij and Cij for any value of & can
be computed directly.
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2.2 PREDICTION OF E11

The prediction of Ell’ the composite stiffness parallel to the filaments,

is based on the well-known theory that3’ 5.8,9,10,11,13

E, =B - (B -E_)X (2.5)

This theory says that the filaments and the matrix are connected in
parallel (Paul's upper bound3), and each carries a load proportional to its
stiffness. This relation must be corrected for filament misalignment factor, k,

such that

E11 =k [Ef - (Ef - Em)X] (2. 6)
where

Ye1 Y,
X = matrix content by volume = £/ 'm s kel

(100/R) + (¥, ¥V ) -1

This factor takes into account the fact that the filaments may not be exactly
parallel or not perfectly straight. This misalignment is the result of manu-

facturing processes of the composite material.

2.3 PREDICTION OF EZZ
The transverse stiffness, EZZ’ of a unidirectional composite can be de-
rived by considering the filaments as parallel cylindrical inclusions. This
problem can be regarded as analogous to Hashin's problem on spherical4 and
cylindrical13 inclusions, But in the case of high filament content (say,
R = 20 percent), many filaments become contiguous, i.e., they are in contact
rather than isolated by the matrix, as shown in Figure 1. Thus, the assump-
tions in Reference 13, that (1) each inclusion is completely enclosed by the
matrix and (2) the amount of resin enclosing each inclusion is the same as the
average matrix content of the entire composite, must be modified. Hence, fila-

ment contiguity must be incorporated in the theoretical prediction of EZZ'
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The problem of filament contiguity can be resolved by taking two ex-
treme cases: (1) all filaments are isolated; (2) all filaments are contiguous,
The actual packing of the filaments is represented by a linear combination of
the two extreme cases. Numerical values of C (for contiguity) can be assigned
to the extreme cases, C = 0 for the isolated filaments and C = 1 for the con-

tiguous filaments, The resulting relation of E,, islé’ 17,19

KA2K_ +G_)-G_(K;-K_)X

E =2 Jl-v, +(v,= v )X}l -C)
22 [ f f 'm ] (2K_ +G_) +2(K.-K )X
m m f m

(2.7)
. c Kf (ZKm + Gf) + C:f (Km - Kf) . ¢
(ZKm + Gf) -2 (Km - Kf) X
where
Kf = Ef/Z(l - vf)

K, =E_/2(1-v_)

G, = Ef/Z(l + v

f f)

G_=E_/2(1+ v_)
0£C<x1

The actual value of C is expected to be closer to 0 than to 1 because the latter
case replaces the filament in contact by a continuous phase of the filament
material. As a comparison, the mathematical models used in References 12-14

correspond to the case of C = 0 (filaments completely isolated).

2.4 PREDICTION OF Vi
The major Poisson's ratio, V5, can be obtained by considering the iso-
tropic plane of the unidirectional composite to be in a state of plane stress,

i.e., o, = 0, where 9, is the normal stress component along the axis of the

-




filaments., The amount of lateral contraction, as measured by (x’ is pro-

portional to ylZ’ 80 that18
‘E € E € )
Vlz = 11 X - _ 11 X (2. 8)
o + o 2p
y z

where p = two-dimensional hydrostatic pressure.
The effect of filament packing must also be accounted for here as in the
prediction of EZZ' Following the same method as for EZZ’ the resulting
19

relation is

K, v,(2K_+G_)(1-X)+K_ v (2K +G_)X

Via ® (1 -0C)
Kf (ZKm + Gm) - Gm (Kf - Km) X

(2.9)

. K_ v (2K +G)X +K; v (2K_+Gg (1 - X)

K, (2K_ + G + Gy (K - K)) X

Needless to say, the value of C for the major Poisson's ratio and the transverse
stiffness must be the same for a given unidirectional composite.
2,5 PREDICTION OF G

The shear modulus, G, of a unidirectional composite is derived by again
considering two extreme cases: C = 0,as shown in Reference 13,and C = 1. The

resulting relation is

2G, - (G, - G_)X

G=(1-C)G
™2G_+(G,-G_)X
m f m

(2. 10)
(Gy+G_) - (Gy - G ) X

+CGf

(G£+ Gm) + (Gf - Gm)X
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Again, the value of C for the gross 'éh‘ear modulus, G, for a given unidirectional
composite must be equal to that of thé transverse stiffness and the major

Poisson's ratio. e

2.6 SUMMARY

It is seen that analytical relations kaye been derived between the inde-
pendent material coefficients of a unidirectional composite and the material
and geometric parameters of the constituent materials. The contribution of
each material or geometric parameter can now be ascertained with mathematical
precision, For a given structural application it can be easily determined what
combination of constituent materials is needed to produce the optimum composite
in terms of stress, stiffness or weight,

As a representative glass filament-epoxy resin composite, the following
material parameters of the constituents are used in the computation of the

composite material moduli:

3
1l

10. 6 x 106 psi

f
ve = 0.22
Y = 2.60

6 (2. 11)

E_=0,5x10" psi

m
Vm = 0. 35
Ym ° 1. 15

The contribution of the filament stiffness Ef to the composite moduli
Ell’ EZZ’ and G can now be illustrated. By increasing the value of Ef to
16.0 x 10° psi, which corresponds to the high-modulus glass, or decreasing
Ef to 6.0 x 10° psi while keeping constant all the remaining values of
Equation (2. 11), the composite moduli are computed. The values used for
the filament misalignment factor k is 1,0, and the filament contiguity factor
C is 0.2, These values were found to be reasonable for filament-wound
materials, as will be seen in the next section. The computed results of the
composite moduli are shown in Figure 2. It is clear from the results that the
filament stiffness makes the most significant contribution to the axial stiffness

E“.
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Similarly, the contribution of the matrix stiffness Em to the composite
moduli E, , E,,, and G can be illustrated by using different values of E_ (1.2
and 0.2 x 106 psi) while keeping all the remaining material parameters in
Equation (2. 11) constant. The computed moduli are shown in Figure 3, with
k=1.0and C = 0.2 as before. Itis clear from the Figure that the matrix
stiffness affects EZZ and G more than El 1’

The effects of Poisson's ratios of the constituent materials on the com-
posite moduli are illustrated in Figure 4 by substituting a number of combinations
of Poisson's ratios into the equations for the composite moduli. The axial
stiffness is not affected by the Poisson's ratios, because Equation (2. 6) does
not contain Poisson's ratios. The transverse stiffness and shear modulus do
not change significantly by the values of Poisson's ratio. Since most real
materials have values of Poisson's ratio between 0.2 and 0.4, the variation
of the major Poisson's ratio due to material parameters is not expected to be
significant and is, therefore, omitted from the present discussion.

With the composite moduli expressed as analytical functions of the
material and geometric parameters, optimization of unidirectional composites

can be achieved in a straightforward manner.
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SECTION 3

UNIDIRECTIONAL COMPOSITES -
EXPERIMENTAL VERIFICATION

3.1 INTRODUCTION

Among all the available investigations on the material coefficients of
unidirectional composites, experimental verification of the theoretical predic-
8,9,10,12,13, 14 5,11

The lack of

20,21 Thus,

the purpose of this section is twofold: (1) to design critical experiments for the

tions is either nonexistent or incomplete.

fundamental data on filament-wound materials has often been cited.

purpose of verifying the theoretical predictions of the preceding section and
(2) to provide usable data on a typical unidirectional composite. Filament-

wound materials fulfill the requirements best for the following reasons:

(1) availability of materials, (2) availability of advanced process technology,
and (3) the fact that these materials are in actual use.

Two systems of unidirectional specimens_ were made. In both cases,
unidirectional plies were laid by hand to provide the final thickness, Resin
content for each system represents the average of four samples taken from
widely spaced locations. The two systems are discussed in the following

paragraphs.

a. Scotch-ply

This system consisted of Minnesota Mining and Manufacturing Company
Scotch-ply No. 1009-33 W2 38. The curing cycle was: press preheated to
200°F, pressure 40 psi, temperature 300°F for 2 hours, followed by slow
cooling. The cured thicknesses ranged between 0.1 to 0,2 inch and the resin

contents between 20 to 35 percent.




b. NUF
This system consisted of 11 plies of U.S. Polymeric Company

E-787-NUF. The curing cycle was: no preheat, pressure 50 psi, tempera-

ture 300°F for 2 hours, followed by slow cooling. The cured thickness was

approximately 0.2 inch, and the resin content ranged from 13 to 20 percent.
The experimental determination of the composite anisotropic constants

was obtained as follows:

(1) Ell and E22

tension tests on 0° and 90° beams (beams cut parallel or

were obtained by simple flexural or uniaxial

transverse to the filaments), Strains were determined
from strain rosettes or cross-head motion. The Ell and
EZZ obtained from the strain gage readings agreed well
with those obtained from simple bending. The implication
was that tensile, compressive, and flexural moduli, at
1 and E

least for E were essentially the same.

1 22’

2y v 12 Was measured by strain rosettes mounted on 0° beams.
The beams were subjected to uniaxial tension or simple

bending. Both loading schemes yielded identical data for Vg

(3) G was measured by imposing a pure twisting moment on
a square plate (0o plate). This was accomplished by
placing four equal forces at the corners of the square plate.
The forces were perpendicular to the plate, with those at
the first and third quadrant corners being upward and the
second and fourth downward. G was computed from the
ratio of the imposed forces and the vertical deflection at the
center of the plate in accordance with the elementary theory

of plates.
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3.2 EXPERIMENTAL RESULTS
In this subsection, the theoretical predictions of the composite moduli
are compared with experimental measurements. Glass filament-epoxy resin

systems with the following properties were used (same as Equation (2. 11)):

10.6 x 106 psi

&=
#

f
vf = 0,22
Yg =2.60 (3.1)
E =0.5x 106 psi
m
v = 0, 35
m
ym = 1,15

Substituting these data into Equation (2. 6), E11 for k=1, and 0.9
were computed and are shown in Figure 5, together with experimental points.
Practically all points fall between k = 0,9 and 1, 0. Since the specimens were
laid by hand, filament misalignment was expected to occur. This would re-
sult in a k value less than unity.

Using the same data of Equation (3. 1), E22 was computed from
Equation (2.7) for C =0, 0.2, 0.4, and 1, as shown in Figure 5. It appeared
that experimental data agreed with the case of C = 0.2. The E22 predicted by
the series-connected phases is also shown. Hashin and Rosen's prediction
corresponds to the C = 0 case, These predictions yield lower values than those
measured, Insofar as netting analysis is concerned, E22 is presumed to be
equal to zero or Em; this obviously disagrees with experimental data. The
prediction of Herrmann and Pister14 is also shown; the difference between
this prediction and measured data is self-evident. Jacobsen's predict-ion12 of
E22 yields a higher value than Ell; this is not reasonable.

The contiguity factor C, though convenient and sound in theory, still
needed a more critical verification., For this reason, steel rod-epoxy com-
posites were made with C = 0 (i, e., each rod was completely separated by
the resin) and C = 1 (i. e., a steel rod was drilled and subsequently packed
with resin)., A total of 54 rods or drill holes, arrayed in three rows, made up
the composite bar., The rods or drill holes ran transversely to the axis of the

bar, as shown in Figure 6.
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Figure 6. Steel-Epoxy Specimens
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Substituting the following data:

Ef =30x 106 psi
v, = 0.30
Yf =7.87

6 (3.2)
Em= as measured (i.e., 0.45, 0.60, 0,50 x 10~ psi)

v =20,35
m
Y = 1. 15

into Equation (2.7) for C = 0 and 1, the computed results and the measured data
are shown in Figure 7. It is seen that the data agreed very well with the C = 0
and 1 cases. These results demonstrated the physical significance of the con-
tiguity factor.

Using the data of Equation (3. 1), v,, was computed from Equation (2.9)
for C =0, 0.2, 0.4, and 1. This is shown in Figure 8, together with the meas-
ured points. Practically all points fell between C = 0 and 0.4. This is a further
verification of the contiguity factor,

Again using the data on Equation (3. 1), G was computed from Equa-
tion (2. 10) for C=0. 0.2, 0.4, and 1. This is also shown in Figure 8, together
with the measured points. Again, all points fell between C = 0 and 0. 4. The
bounds based on Paul's theory were drawn in dotted lines to illustrate the in-
accuracy of this approximate theory when Ef is much greater than Eer The
prediction of G by Herrmann and Pister14 yielded higher values than those

13

measured, as shown in Figure 8. Hashin and Rosen*” predicted a much lower

value (corresponded to C = 0). In fact, the measured points were higher than

the theoretical upper bounds of Reference 13.

3.3 CONCLUSIONS

It is seen that the basic theoretical predictions of the composite

moduli of unidirectional filament-wound composites were in agreement with
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experimental observations. The contribution of each material parameter to
the composite moduli as predicted in the preceding section must be reasonable;
thus,

»

(1) Ef makes a significant contribution to Ell‘
(2) Em makes a significant contribution to E22 and G,

(3) Ve and Voo do not make significant contributions to Ell’
EZZ' and G, For this reason, V282 function of the
material parameters has not been investigated.
Insofar as geometric parameters R, C, and k are concerned, one can

conclude:

(1) Matrix content R makes a significant contribution to E1 T
EZZ' and G. R is directly related to the weight of the

composite.

(2) Contiguity C is probably not a controllable process
parameter for the system under investigation. Insofar
as stiffness is concerned, a higher value of C increases

E,;p-
are of the same order of magnitude, the composite moduli

It is of interest to note that when the Ef and .Em

for C = 0 and 1 become very close. A fictitious matrix
(Em =5,0x 106) is combined with a high modulus glass
(Ef =16.0x 106) with a modulus ratio of 3.2. The
tesultant composite transverse stiffness is shown in
Figure 9. The difference between C = 0 and 1 is very
small as compared with the same difference in Figure 7.
This may be considered as a justification for ignoring
contiguity in Hashin's work on tungsten carbide-colbalt
composites, for which Ef/Em = 3,.4,4 But for glass-epoxy
composites, for which Ef/Em = 20, the effect of contiguity

has been shown to be significant.

(3) Filament misalignment k affects E|,. This is detri-

mental in the sense that it decreases its value,.

3-9




TRANSVERSE STI?FNESS IN 105 psi

12\
10
N Co
c=0
8 \\
6 N
INPUT
Eq = 16.0x 10% psi
49— v, = 0.22
6
€, = 50x 10°PsI
Yy = 0.35
2
0
10 20 40 70 100

R, PERCENT RESIN CONTENT BY WEIGHT

Figure 9. Transverse Stiffness of a Fictitious Composite




It is seen that reliable properties of filament-wound materials are
now available. Needless to say, the theory developed in this study is appli-
cable to all fiber-reinforced composites. In succeeding sections, laminated
composites consisting of orthotropic unit layers will be investigated.

The mechanical properties of a unidirectional composite can be varied
by a wide margin by changing one or several geometric and material param-
eters. A program of materials optimization in terms of stress, stiffness,
and weight can be readily obtained. This provides an added dimension to the

designer of structures,




SECTION 4

THEORY OF LAMINATED COMPOSITES

4.1 INTRODUCTION

The laminated composite under present investigation consists of n plies

of homogeneous anisotropic sheets. The stress-strain relation of the kth ply is_

t(?) - ng) a(;{) » (4. 1)
a(li<) = CS() A?) (4.2)

where 1 £ k £ n; €, = strain components; o, = stress components; Sij =
compliance matrix; Cij = stiffness matrix; i, j = 1, 2, 6; and repeated indices
represent summation.

In the classical plate theory, the variables used are

h/2
N, = stress resultant = f o,dz, in 1b/in.
-h/2
h/2
Mi = stress couple = / o,z dz, inlb
-h/2
o_ . . .
€, = in-plane strain, in in. /in.
K . = bending curvature, in (in.)"




where the total strain e ;T € ? +z K Thus the constitutive equation of a

laminated anisotropic plate, in matrix form, is

N A | B e
I
N R %____ (4.3)
]
M B | D K

where the composite material matrix is partitioned into four submatrices, so

that

[A. (B, ] =4, B, D.

i Cit i
(4. 4)
h/2
- f (1, z, z°) C;; d 2 inIb/in., Ib, Ib-in.
“h/2

Since each partitioned matrix is symmetric, the composite material matrix

is symmetric.

The purpose of the present investigation is to study the nature of A, B,
and D matrices as functions of material and lamination parameters. The
material parameters refer to the Cij matrix of the unit plies; the lamination
parameters refer to the thickness and orientation of each ply and the total num-

ber and stacking sequence of all the plies.

4.2 INVERSION OF COMPOSITE MATRIX

It is often more convenient to use the inverted constitutive equations of
Equation (4. 3). This can be easily accomplished as follows: Equation (4. 3)

can be written as

N = A €+B«x (4.5)
=B & +Dxk (4. 6)
From Equation (4. 5), © = At N - A-1 Bk (4.7)
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Substituting Equation (4.7) into (4. 6) and rearranging,

1 1

M=BA "N+(-BA " B+D)«

Céfnbining Equations (4.7) and (4. 8), in matrix form, gives

- { -
el |at o .als N
SR ES— S
|
-1 1 -1
M BA » D-BA ' B K
-3
g s
A" i B N
i
L (S —— [,
- 1
[}
% ! ¢
H I ») K

(4.8)

(4.9)

(4.10)

where the definitions of the star matrices are self-evident. Unlike the com-

posite material matrix of Equation (4. 3), the composite star matrix is not
d* ok
symmetric, i.e, B ¥ H . This equation is a partial inversion of Equation

(4. 3). The components of the star matrices are used as the coefficients of

the differential equation of equilibrium for laminated plates and shells. Re-

writing Equation (4. 10),

* %
€°=AN+BK

* *
M = H N+D«

From Equation (4. 12),

Substituting Equation (4. 13) into (4. 12),

- ¢ %k *a %
€ =B*p"!mMm+@a*-B* D" %N

(4.11)
(4.12)

(4.13)

(4. 14)




Combining Equation (4. 13) and (4. 14), in matrix form, gives

€° rA:: B Dl g } B p | IN
= ————————4——w:L —————— (4. 15)
K __-D*'1 H | p*! M
[ A | B N
P (4. 16)
H' E D! M

where the definitions of the prime matrices are self-evident. Since the comi-
posite prime matrix is the inversion of the composite material matrix of
Equation (4. 3), it is also symmetric, i.e, B' = H'. This equation is the com-
plete inversion of Equation (4. 3). Equation (4. 16) is more convenient to use

if the amount of stretching and bending is known for a given problem.

4.3 THE CONSTITUTIVE EQUATION

Equation (4. 3), or its alternate form as shown in Equation (4. 10) or
(4. 16), is the most general constitutive equation for laminated anisotropic
plates and shells., Since Cij is a fourth-rank symmetric tensor, Aij’ Bij’ and
Dij must retain the same tensorial properties of Ci" i, e., they are also fourth-
rank symmetric tensors. As defined in Equation (4. 4), Aij’ Bij’ and Dij are
obtained by integration along the z axis. This is a scalar operation, which, by
definition, does not alter the tensorial property of Cij' Thus, in general, there
are 18 independent constants in the present constitutive equation.

If the plate is homogeneous, i.e., Cij is not a function of z,
12
= = : .1
Aij ;2- Dij’ Bij 0 (4.17)
The only independent matrix is A; thus, the number of independent constants is

at most six.




SECTION 5

CROSS-PLY COMPOSITES - THEORY

5.1 LAMINATION PARAMETERS

The cross-ply composite consists of n layers of an orthotropic material
stacked with alternating orientation of 90° between layers. The principal
direction of the odd layers coincide with the x axis, and the even layers with the
y axis. All the odd 1ayers>have the same thickness. The even layers also have
the same thickness, which may be different from that of the odd layers. The
lamination parameters of interest are n, the total number of layers, and m, the
cross-ply ratio which is defined as the ratio of the total thickness of the odd
layers to the total thickness of the even layers.

The purpose of this section is to determine the composite material
matrices A, B, and D as functions of the material parameter Cij and lamination
parameters m and n,

Assuming each unit layer is homogeneous, the integrations of Equa-

tion (4. 4) can be replaced by summations, as follows:

n

_ (k) ‘
Ay - E ct (hk L1 hk) (5. 1)
k=1
n
1 (k) (.2 2 ‘
By = 3 Z Ci; (hk+ 1" hk) (5.2)
k=1
n
1 k) [.3 3
Dy =% Z ct (hk oy- hk) (5. 3)
k=1




For cross-ply composites, all layers are orthotropic, so that components of

the Cij for odd layers are

C11r Cazr Cppr Gy With C = Cy = 0

‘The components of the Cij for even layers are the same as those for the odd

layers, except that C11 and CZZ are interchanged.

5.2 DERIVATION OF A, B, AND D MATRICES

The summations of Equations (5.11), (5.2), and (5.3), can be expressed
in closed form for the cross-ply composite. This is accomplished by taking
advantage of the properties of series. In a straightforward but laborious manner,
the following, where F = the ratio of principal stiffnesses of the unit ply
= CZZ/CII = EZZ/EII’ can be derived:

a. For n Odd

Ay = lim (m+F)hC (5.4)
A22=1im(1+mp)hc“=1;%1’:A“ (5. 5)
Az = RCp (5.6)
Age = B Cgq (5.7)
Ale = Age=0 | (5. 8)
By = 0 (5.9)




3

_ h
Dy, [(F- _1)P+1] 5 Cyy (5. 10)
l1+m h2
= [(F-l)P+l]-— = Ay (5.11)
m+F 12
- h3
D,, = [(1-F)P+F — C, (5.12)
412
J1+m h2
- [o-me+rF L (5.13)
“m+F 12
D, = ﬁ C (5. 14)
12 12 12 .
W3
Dee = T2 Cee (5. 15)
Dy = Dy, =0 (5.16)
where
N 1 m(n-3)[m(n-1)+2(n+1)]
P = 3t z 3
(1 + m) (n~ - 1) (1 + m)

For n Even
Same as the n-odd case, except for the following components:
m (F - 1) 2 m (F - 1)

b C " s rm m+F P41 (5. 17)

B = - B =
11 22 n (1l + m)
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) h
D, = [(F-I)Q+1] LA (5. 18)
12
h2 l1+m
= [(F-I)Q+l] — A, (5.19)
12 m+ F
.3
D,, = [(1-F)Q+F]— C, (5.20)
12
e 1+
- [(1-F)Q+F]— 1rmooa (5.21)
12 m+ F
where
_ 1 8m(m - 1)
Q = -
1-m n® (1 + m)>

5.3 DISCUSSIONS OF A, B, AND D MATRICES

Using Equations (5. 4) and (5. 5), A11 and A22 are plotted, in dimension-
less form, in Figure 10. The remaining components of A are not plotted because
either they are identically zero or they remain constant, as shown in Equa-

tions (5. 6), (5.7), and (5.8). One can conclude that for cross-ply construction:

(1) Aij remains orthotropic.
{2) Aij is independent of n, the total number of plies,

(3) A, and A,, are affected drastically by both the stiff-

11 22
ness ratio F and the cross-ply ratio m.
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(4) The average stiffness ratio for filament-wound
unidirectional ply is approximately 0.3 for resin
contents by weight between 15 and 30 percent, This
is also plotted in Figure 10. As a comparison, the
stiffness based on netting analysis, which assumes

C22
tween the two cases, the former case being called the

= 0or F =0, is also shown, The difference be-

continuum analysis for identification and the latter the
netting analysis, is quite substantial. The cross-ply
ratio, m, for '"balanced design'' based on netting analy-

sis is equal to 2.0,

The Bij is identically zero for cross-ply construction except for Bll’
which is equal to _BZZ’ when n is even. Using Equation (5, 17), -»B11 and BZZ
are plotted, in dimensionless form, in Figure 11. The physical significance
of B11 can be interpreted as a measure of the shifting of the neutral plane,.

The numerical value in Figure 11 represents the amount of shifting as a frac-
tion of the total plate thickness. The maximum amount of shifting occurs when
n = 2, The shifting is inversely proportional to n. It becomes small for a
large number of plies. It is interesting to observe that this Bij has only one
independent component, i.e., Bll’ with B22 = —B11 and B12 = B66 = Blb = BZ()
= 0. This matrix is more than orthotropic, in the sense that its level of

elastic symmetry is higher than the orthotropic case. The transformation

property of the Bij is also shown in Figure 11. B'l'l = —B'Z'2 holds for all angles.
B'l'2 and ng remain identically zero. B'l'6 = B'2'6 also holds for all angles. At
459, B'l'1 = B’Z'2 = 0; i, e., the shifting of the neutral plane is zero. At this

orientation, the cross ply becomes the same as an angle ply, for which the
neutral plane does not shift.

The D matrix is much more complicated than the A and B matrices.
Since D11 and D22 depend on both the total number of plies n and stiffness
ratio F, only a few combinations of n and F are shown in Figure 12. Again,
F = 0.3 represents the filament-wound material based on the continuum analy-
sis. Firstzof all, for cross-ply composites Dij is orthotropic, D11 and D22
approach h All/ 12 and n? A22/12, respectively (i. e,, the cross-ply composite
approaches a homogeneous plate), when: (1) m becomes large, (2) n becomes

large, or (3) F approaches 1. For a given cross-ply ratio (say, m = 2), the
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dimensionless flexural rigidities vary significantly, depending on the num-
ber of plies, with n = 3 and 2 as the extreme cases for m 2 1. It is seen that
an optimum set of material properties can be obtained by using a correct com-
bination of lamination parameters.

Insofar as netting analysis is concerned, the D matrix would be identi-

cally zero. This follows directly from the assumptions that the filaments are

- perfectly flexible and the binding matrix perfectly compliant. Hence, for the

D matrix, F = 0 does not correspond to the predictions of the netting analysis.
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SECTION 6

CROSS-PLY COMPOSITES -
EXPERIMENTAL VERIFICATION

6.1 EXPERIMENTAL PROCEDURE

The purpose of this section is twofold: (1) to establish the validity of
the classical theory of laminated plates and (2) to provide usable data for the
design of cross-ply composites, which are often used in pressure vessels.
Experimental verification is accomplished by comparing the measured material
coefficients of laminated composites with the theoretical values derived from
the preceding section.

Since all tests were performed by observing the surface strains under
the influence of loads or bending moments, it was more direct to compare the
theoretical and measured values of the A', B', and D' matrices than the A, B
and D matrices. The primed matrices are the coefficients of the constitutive
equation in the inverted form, Equation (4. 16); the unprimed matrices are the
coefficients of the original constitutive Equation, (4. 3). Since there is a one-
to-one correspondence between the two forms of the constitutive equation, an
experimental verification of one of the forms means an equal verification of
the other,

All laminated specimens were made of layers of the NUF unidirectional
composites. The resin content was approximately 17 percent by weight. The
elastic moduli of this unidirectional composite were determined experimentally
and found to be in excellent agreement with the theory of unidirectional compos-
ites given in Section 2 of this report. The moduli were as given in Equation

(6. 1) which follows,




E 7.80 x 106 psi

11
E,, = 2.60x 106 psi

22 (6.1)
Vi2 © 0.25

G = 1.25x106 psi

Using these data, the A, B, and D matrices were first computed for
various combinations of m (cross-ply ratio) and n (total number of layers).
Then the A%, B%, H*, D%, A', B', H', and D' matrices were computed,
according to Section 4.

As shown in Section 5, two- and three-layer laminated composites are
of special interest, since each represents an extreme case. When the number
of layers becomes large, the laminated composite approaches a homogeneous
plate very rapidly. Thus, n = 2 and 3 represent the range of variation of the
composite properties in a laminated composite. For this reason, all experi-
mental verifications were effectively achieved by testing n = 2 and 3 for various
values of m between 1 and 10,

The components of the A', B' and D' matrices were measured by testing
0° and 90° beams. The 0° beams were cut with the axis of the beams running
parallel to the axis of the filaments of the odd layers; the 90° beams parallel to
the filaments of the even layers. Strain rosettes were mounted on both sides
of the beam specimens. The in-plane strain and bending curvature were com-

puted by solving the following simultaneous equations:

C+ P ok o=
1 2 1 1
(6.2)
€© -2 x =€’
1 2 1 1

where h = the thickness of the specimen; superscripts plus (+) and minus (-)
referred to the strain rosettes mounted on the sides of the specimen; i = 1, 2,
and 6.

By applying a uniaxial tension N, to a 0° beam, Alll' Al B'“, and
B}, were measured. By applying a bending moment M, to the same beam,
Dj;» Dj,s Bj;, and B}, were measured. By repeating the same tests on a
90° beam, A'ZZ' A'ZI' B'ZZ’ B'ZI' D.'?.Z’ and D'21 were obtained. D66 was ob-
tained by imposing a pure twisting test on a 0° square plate. A66 was not
measured.
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6.2 EXPERIMENTAL RESULTS

The experimental results of cross-ply laminated composites of two- and
three-layer construction for various cross-ply ratios are shown in Figure 13,
The theoretical predictions based on the data given in Equation (6. 1) are shown
as solid liﬁes-. The data for the unidirectional composites, which correspond
tom = o, are shown as m = 10, D66 remained constant for all values of m.
This was confirmed by tests, The results are not shown in Figure 13.

The level of strain was kept below 500 micro-inches per inch. In this

range, the load-strain curves were linear and elastic.

6.3 CONCLUSIONS

It is seen that the material coefficients of cross-ply composites can be
accurately predicted by using the classical theory of laminated plates. The
coupling between the in-plane strain and moment and between curvature and
stress resultant is very strong for n even, with n = 2 being the strongest. The
effect of coupling will give rise to internally induced stresses which are additive
to the externally imposed stresses.

Netting analysis, in a very approximate fashion, takes into account the
Aij but ignores Bij and Di" In such an analysis, only the cruss-ply ratio m is
significant, while the stacking sequence of the unidirectional layers or the total
number of layers n is ignored. It is believed that conclusive evidence has been
presented here to show that the continuum analysis is more realistic than the

netting analysis.
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SECTION 7

ANGLE-PLY COMPOSITES — THEORY

7.1 LAMINATION PARAMETERS

The angle-ply composite consists of n unit plies of an orthotropic mate-
rial, with an alternating angle of orientation between layers. The odd plies are
orientated with an angle - @ from the x axis and the even plies + 6. All plies
have the same thickness. The lamination parameters for the angle-ply
composite are the total number of plies n and the lamination angle @ .

The purpose of this section is to determine the composite material
matrices A, B, and D as functions of the material parameter cij of the unit ply

and the lamination parameters n and 6 .

7.2 DERIVATION OF A, B, AND D MATRICES

As stated in Section 5.2, the A, B, and D matrices can be obtained by
summations shown in Equations (5. 1), (5.2) and (5.3). For angle-ply compos-
ites, these summations can be further simplified. In fact, A, B, and D can
be computed by very simple equations which can be easily derived by expanding
the summations and using the conditions of the angle-ply composite (symmetric

orientation of unit plies of equal thicknesses). The equations are shown in the




following, where the Cij is the stiffness matrix with - 6 orientation:*

a,

For n Odd

App A Ay Ay =h(C) ), C

11 C220 Cjpr Cgg)

_h
(Ajgr Age) = - (Crer C2¢)

B, = 0
ij

3
(Dy1» Daar Dyps Dgg) = 5 (Cpph Cppn Cppn Gy

3, 2
_h 3n" -2
(D1 Dag) = ‘1_2(‘_“—‘“3 )(Clé’ C2¢)
n .

For n Even

Same as the n odd case, except for the following components;

Alg = By = O

2
(Bygr Bag) == — (Cpgn Cyy)
Dig = D = 0

s’
The cij for + @ orientation is equal to that of the - @ orientation, except that

the sign for C16 and Cze is changed.
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7.3 DISCUSSIONS OF A, B, AND D MATRICES

The absolute values of A“ for a representative filament-wound angle-
ply composite is plotted against the lamination angle 6 in Figure 14, The other
components of Ai' are also shown in Figure 13 in dimensionless form. A“, AZZ'
AlZ’ and A66 are independent of the number of plies, n. Alb and A26' however,
are dependent on n; when n is even, they are zero; when n is odd, A16 and A26
are inversely proportional to n. Thus, the maximum absolute values for A16
and A26 occur when n = 3, It is interesting to note that, for n even, Aij is
orthotropic; for n odd, it is not orthotropic, because the plane of elastic sym-
metry is destroyed. For the latter case, the number of independent constants
is six. This is a truly anisotropic system, corresponding to the triclinic case
for three-dimensional bodies. According to netting analysis,a lamination angle
of 53-3/4° is the optimum angle for internally pressurized vessels. According
to continuum analysis, there is no reason to restrict the use of the lamination
angle to one specific value.

The B matrix for angle-ply composites is identically zero for n odd, but
a function of n for n even. The dimensionless B, is plotted in Figure 15. The
effect of this ratio can be seen, as follows.

For uniaxial extension, the only non-zero component on the right-hand
side of Equation (4.3) is ¢ c1>' Expanding Equation (4. 3),

Ny =A) €]

Ny =4, €]

N;=A16 c‘l’ = 0 (7.9)
M, =B, e‘l’ = 0

M,=B,, ¢‘1’ = 0

Mg=Bo €]
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Thus

B
le . _6 (7. 10)

hAll th

This ratio signifies the ratio of the internally induced twisting moment to the

in-plane stress resultant. From this ratio can be computed the ratio of the

shear stress over the normal stress for the case of uniaxial extension,

Similarly, it can be shown that

° = M6 : (7.11)
h N

26

h AZZ

This latter ratio has the same numerical value as Equation (7. 10), except that
the complement of the lamination angle is used for the abscissa.

The case of cross coupling caused by the nonvanishing Bl6 and B26 was
discussed by Reissner and Stavsky = for a two-layer angle ply, From Figure 15
it is clear that this coupling for a representative filament-wound composite is
relatively weak, The coupling effect weakens very rapidly as n increases or 6
deviates from 45°,

The D matrix for n even remains orthotropic. For n odd, D deviates
markedly from orthotropic symmetry; as can be seen from Figure 15 the
dimensionless D16 is 0,30 for n = 3. This means that for simple bending, the
induced twisting moment is 30 percent of the imposed bending moment. This is a
very strong coupling and it does not decrease rapidly as n increases. The
perturbation technique of Dong and Dong?'3 for solving problems of anisotropic
plates and shells will not be acceptable. The ratio of 12D26/h2 AZZ is the same

as the dimensionless le if the complement of the lamination angle is used.
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SECTION 8

ANGLE-PLY COMPOSITES -
EXPERIMENTAL VERIFICATION

8.1 EXPERIMENTAL PROCEDURE

The experimental procedure used for the verification of the material
coefficients of angle-ply composites paralleled closely that used for the
cross-ply composites. Again, measurements of the A', B', and D' matrices
were made instead of the A, B, and D matrices, because stress resultants Ni
and bending moments Mi were the independent variables. Three-element
strain rosettes were bonded to both sides of 0° and 90° beams. Uniaxial ten-
sile loads and bending moments were applied to the beams sequentially. From
the recorded surface strains, the in-plane strains and curvatures were com-
puted in the same straightforward manner as before.

The total number of layers was limited to two and three. Then =2
case was chosen because for this case the values of B16 and B26 were maxi-
mum; i, e., the strongest coupling existed between the in-plane strain and
twisting moment or between the bending curvature and shear stress resultant.
The n = 3 case was chosen because the values of Alb' A26’ D16' and D26 were
maximum; i. e., maximum deviations from orthotropic symmetry of the A and-
D matrices existed. The figures in the preceding section showed the above

effects.

8.2 EXPERIMENTAL RESULTS

Measurements were made on angle-ply composites with various lami-
nation angles. The theoretical predictions of the material coefficients were

computed from the data in Equation (6.1). In Figure 16, good agreement
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between the theoretical and experimental results is shown. The unidirectional
composite corresponds to the 0° and 90° cases.
The theoretical curves for AZZ' A26' sz, DZZ’ and D26 were not shown,
. . [s])
They were the mirror images (at 45°) of All’ A16’ Bl6' Dll’ and Dl6’
respectively. Also omitted from Figure 15 were A66 and D66'

8.3 CONCLUSIONS

For n = 2, a cross coupling caused by Bie and sz exists, This is a
source of internally induced shear stress in an angle-ply composite that is
additive to the externally imposed stresses, This is similar to the coupling
caused by B, , and B

11 22
duced stresses are normal stresses.

in the cross-ply composite, except that there the in-

For n = 3, it is seen that the types of elastic symmetry for the A and D
matrices are changed from orthotropic symmetries at 0° and 90° to states of
general anisotropy (i. e., no symmetry at all).

Based on the experimental results obtained here, the following can be

concluded:

(1) The properties of unidirectional composites do transform
in accordance with the fourth-rank tensor; thus, the use

of the generalized Hooke's law is justified,

(2) The assumptions of the classical theory of anisotropic

plates are reasonable,

(3) The original data for the unidirectional composite, as
shown in Equation (6. 1), are accurate; otherwise the
variations of the A, B, and D matrices with the lami-

nation angle would not agree with the measured data.




SECTION 9

LAMINATED PRESSURE VESSELS

9.1 THEORY OF LAMINATED PRESSURE VESSELS

For cylindrical pressure vessels of thin-wall construction, the
membrane theory of shells is applicable. The stress resultants caused by
internal pressure are

Ny = PR, N, = PR/2 (9.1)

where subscripts H and L denote hoop and longitudinal directions, respectively.

Using the inverted constitutive Equation (4. 10) for cross-ply cylinders,

o & P
‘H A A2 Ny
- (9.2)
[o] % E
‘L A2 A2 Ny,

where direction 1 = hoop; direction 2 = longitudinal. Combining Equations (9. 1)

and (9. 2),

(A”l‘1 + A"l‘z/Z) PR

Tmo

(9. 3)

* *
(Alz + AZZ/Z) PR

o




It is more convenient to rearrange Equation (9. 3) as follows:

E..h

11 o _ % *
€. = (A¥ + A¥ /2)E. . h
PR H 11 12 11
(9. 4)
Ell h o * *
€ = (A + AY_ /2)E. . h
PR L 12 22 11

where E11 = axial stiffness of the unidirectional composite and h = total shell
thickness.

Netting analysis, on the other hand, predicts the following relations:

E.. h

11 e = 1+tm
PR H m
(9.5)
i}_}_l e© - 1+tm
PR L 2
where m = cross-ply ratio = hH/hL.
The difference between the continuum analysis (9. 4) and the netting
analysis (9.5) is quite substantial. According to the former, the resultant
strains are dependent on material coefficients A’i‘l, ATZ' and A;“z. These co-

efficients are, in general, functions of all the original anisotropic constants of
the unidirectional composite and the cross-ply ratio m. The netting analysis

predicts that the strains are only functions of m.

9.2 EXPERIMENTAL RESULTS

Cylindrical pressure vessels with various values of cross-ply ratios
were made and tested. The resultant surface strains are plotted in Figure 17,
together with the theoretical predictions of both netting and continuum analyses,
Unidirectional vessels (hoop winding only) correspond to m = © , but for these
particular vessels m = 10 is reasonably close tom = o so far as the strains

are concerned.
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From the experimental results, it is clear that the continuum analysis
is more exact than netting analysis, particularly in the prediction of the longi-
tudinal strain. The maximum level of strain was about 500 micro-inches per

inch, The pressure-strain relations were linear and elastic.

9,3 CONCLUSIONS

The experimental confirmation of cross-ply laminated pressure vessels
was adequate to establish the basis of continuum analysis. The significance of
the continuum analysis extends beyond the determination of strains. The stress
distribution, for example, can be computed from the constitutive equation of
Section 4 in a straightforward manner. In a cylindrical pressure vessel, geo-
metric constraint prohibits induced curvatures; i. e., cylindrical sections re-
main cylindrical.

From Equation (4. 12),
%k
M=H N (9. 6)

where M = internally induced moments caused by zero curvature. The moments
would, in turn, affect the complete stress distribution in the pressure vessel.
In the prediction of strength, the induced stress and the initial stress must all
be added to the externally imposed stress. The exact level of total stress must

be known before one can assert what the ''glass stress'' or any other stress is.
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SECTION 10

CONCLUSIONS

10,1 STATEMENT OF WORK ACCOMPLISHED
The work accomplished to date can be summarized as follows:

(1) Development of a theoretical basis for the prediction of
the gross behavior of fiber-reinforced composites from
the characteristics of the constituent materials. In-

cluded in the development are:

(a) An evaluation of the relationship and contribution of
the fiber and the matrix properties, matrix content,
composite density, and the geometric configuration,

as represented by Equation (2, 2),

(b) The constitutive equations governing the unidirectional
composite, laminated composites (cross-ply and
angle-ply), and pressure vessels, as shown in

‘ Equations (2. 1), (4.3), and (9.2), respectively. The
effects of lamination parameters on the material
coefficients of the cross-ply and angle-ply composites

are shown in Sections 5 and 7, respectively.

(2) Use of suitable experimental technique to verify the theoretical
predictions of Item (1l). Testing has been limited to include
a minimum of experiments for verification. Existing data
other than the axial stiffness of the unidirectional composite,

Ell’ have not been found.
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10.2 LIMITATIONS OF THE THEORETICAL PREDICTIONS

The limitation of the theoretical predictions are summarized as

follows:

a,

Unidirectional Composites

(1)

(2)

(3)

(4)

(5)

(6)

The unidirectional composite is quasi-homogeneous;
i. e., the diameters of the fiber or filament must be
small in comparison with the thickness of the uni-

directional composite, and the filament distribution

must be fairly uniform,
The constituent materials, the filament and the
matrix, are homogeneous, isotropic, and linearly

elastic.

A perfect mechanical bond exists between the filaments

and the matrix.
All filaments are parallel and continuous.

The unidirectional composite is in the form of a thin

plate or layer (i.e., a two-dimensional body).

The unidirectional composite is a two-phase material;

i, e., it contains no air bubbles or other foreign matter.

Laminated Composites

(1)

(2)

The laminated composite consists of perfectly bonded

layers of unidirectional composites of Item a.

The total thickness of the laminated composite is small
in comparison with the length and width of the composite.
The displacement imposed on the composite is small,
assuring the validity of this assumption that normals to

the middle surface are nondeformable.
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10.3 DEFINITION OF FUTURE PROBLEM AREAS

Future problem areas shall include the following as natural extensions

of the present work:

(1) Elasticity analysis of stress concentrations caused by
openings, vibration, buckling, thermal-elasticity,

and so forth.

(2) Strength analysis, which will include the effects of
initial stress (arising from curing), internally in-
duced stress (arising from mechanical coupling, the
B matrix), and structural breakdown of perfect

bonding (''crazing').

(3) Recommendation of test methods for quality control

and design data generation,

(4) Materials optimization for various structural

configurations,

10,4 CONCLUDING STATEMENT

This study has shown the range of mechanical properties derivable
from composite materials. By using glass filaments and epoky resin as the
basic constituents, unidirectional and laminated composites with vastly dif-
ferent properties can be made. Needless to say, other materials can be
used as the constituents in order to produce an even wider range of useful
mechanical properties. The material coefficients of the appropriate consti-
tutive equation are expressed as analytical functions (as opposed to empirical
functions) of various important geometric and material parameters of the
composite. With the analytical functions, materials optimization in terms of
stress, stiffness, or weight can be achieved in an exact fashion—by simple

differentiations with no necessity for additional assumptions.
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The present study has established a rational basis for the analysis of
composite structures. Other multiphase composites can be similarly analyzed.
Composites such as sandwich plates (Cij = isotropic, n = 3), plywood (Cij =
orthotropic, n = 3,5,7) and others are special cases of the general laminated
anisotropic composite covered in this study. The general laminated composite
is inherently heterogeneous and anisotropic. This provides an enormous
flexibility in designing the composite material to meet a specific structural re-
quirement, e.g., the 2:1 ratio of the principal stresses of cylindrical pressure

vessels. It is equally interesting that by selecting the proper lamination param-

eters a laminated anisotropic composite can be made to behave as a homo-

geneous and/or isotropic composite, 24 Thus, both the degrees of heterogeneity |

and anisotropy are controllable. ‘
Netting analysis is not a reasonable theory for filament-wound materi-

als. The continuum analysis outlined in this study is shown to be much more

realistic, and, more importantly, the analysis can be extended to describe

other types of structural behavior, e. g., the vibration and elastic stability of

the composite. It is believed that filament-wound materials have not been uti-

lized to their fullest potential, With added understanding of their behavior, it

is hoped that a reliable basis of optimum design can be established in the near

future, : .
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